Showing posts with label Transducers. Show all posts
Showing posts with label Transducers. Show all posts

Temperature Sensors


Temperature Sensor Types

The most commonly used type of all the sensors are those which detect Temperature or heat. These types of temperature sensor vary from simple ON/OFF thermostatic devices which control a domestic hot water
system to highly sensitive semiconductor types that can control complex process control plants.
We remember from our school science classes that the movement of molecules and atoms produces heat (kinetic energy) and the greater the movement, the more heat that is generated. Temperature Sensors measure the amount of heat energy or even coldness that is generated by an object or system, allowing us to "sense" or detect any physical change to that temperature producing either an analogue or digital output.
There are many different types of Temperature Sensor available and all have different characteristics depending upon their actual application. Temperature sensors consist of two basic physical types:
  • Contact Temperature Sensor Types - These types of temperature sensor are required to be in physical contact with the object being sensed and use conduction to monitor changes in temperature. They can be used to detect solids, liquids or gases over a wide range of temperatures.
  •  
  • Non-contact Temperature Sensor Types - These types of temperature sensor use convection and radiation to monitor changes in temperature. They can be used to detect liquids and gases that emit radiant energy as heat rises and cold settles to the bottom in convection currents or detect the radiant energy being transmitted from an object in the form of infra-red radiation (the sun).

The two basic types of contact or even non-contact temperature sensors can also be sub-divided into the following three groups of sensors, Electro-mechanicalResistive and Electronic and all three types are discussed below.

The Thermostat

The Thermostat is a contact type electro-mechanical temperature sensor or switch, that basically consists of two different metals such as nickel, copper, tungsten or aluminium etc, that are bonded together to form a Bi-metallic strip. The different linear expansion rates of the two dissimilar metals produces a mechanical bending movement when the strip is subjected to heat. The bi-metallic strip is used as a switch in the thermostat and are used extensively to control hot water heating elements in boilers, furnaces, hot water storage tanks as well as in vehicle radiator cooling systems.

The Bi-metallic Thermostat

Bi-metallic Strip Thermostat

The thermostat consists of two thermally different metals stuck together back to back. When it is cold the contacts are closed and current passes through the thermostat. When it gets hot, one metal expands more than the other and the bonded bi-metallic strip bends up (or down) opening the contacts preventing the current from flowing.
Thermostat
On/Off Thermostat
There are two main types of bi-metallic strips based mainly upon their movement when subjected to temperature changes. There are the "snap-action" types that produce an instantaneous "ON/OFF" or "OFF/ON" type action on the electrical contacts at a set temperature point, and the slower "creep-action" types that gradually change their position as the temperature changes.
Snap-action type thermostats are commonly used in our homes for controlling the temperature set point of ovens, irons, immersion hot water tanks and they can also be found on walls to control the domestic heating system.
Creeper types generally consist of a bi-metallic coil or spiral that slowly unwinds or coils-up as the temperature changes. Generally, creeper type bi-metallic strips are more sensitive to temperature changes than the standard snap ON/OFF types as the strip is longer and thinner making them ideal for use in temperature gauges and dials etc.
Although very cheap and are available over a wide operating range, one main disadvantage of the standard snap-action type thermostats when used as a temperature sensor, is that they have a large hysteresis range from when the electrical contacts open until when they close again. For example, it may be set to 20oC but may not open until 22oC or close again until 18oC. So the range of temperature swing can be quite high. Commercially available bi-metallic thermostats for home use do have temperature adjustment screws that allow for a more precise desired temperature set-point and hysteresis level to be pre-set.

The Thermistor

The Thermistor is another type of temperature sensor, whose name is a combination of the wordsTHERM-ally sensitive res-ISTOR. A thermistor is a type of resistor which changes its physical resistance with changes in temperature.
Thermistor
Thermistor
Thermistors are generally made from ceramic materials such as oxides of nickel, manganese or cobalt coated in glass which makes them easily damaged. Their main advantage over snap-action types is their speed of response to any changes in temperature, accuracy and repeatability.
Most types of thermistor's have a Negative Temperature Coefficient of resistance or (NTC), that is their resistance value goes DOWN with an increase in the temperature but some with a Positive Temperature Coefficient, (PTC), their resistance value goes UP with an increase in temperature are also available.
Thermistors are constructed from a ceramic type semiconductor material using metal oxide technology such as manganese, cobalt and nickel, etc. The semiconductor material is generally formed into small pressed discs or balls which are hermetically sealed to give a relatively fast response to any changes in temperature.
Thermistors are rated by their resistive value at room temperature (usually at 25oC), their time constant (the time to react to the temperature change) and their power rating with respect to the current flowing through them. Like resistors, thermistors are available with resistance values at room temperature from 10's of MΩ down to just a few Ohms, but for sensing purposes those types with values in the kilo-ohms are generally used.
Thermistors are passive resistive devices which means we need to pass a current through it to produce a measurable voltage output. Then thermistors are generally connected in series with a suitable biasing resistor to form a potential divider network and the choice of resistor gives a voltage output at some pre-determined temperature point or value for example:

Example No1

The following thermistor has a resistance value of 10KΩ at 25oC and a resistance value of 100Ω at 100oC. Calculate the voltage drop across the thermistor and hence its output voltage (Vout) for both temperatures when connected in series with a 1kΩ resistor across a 12v power supply.
Thermistor Circuit

At 25oC
Thermistor output at 25degs

At 100oC
Thermistor output at 100degs

by changing the fixed resistor value of R2 (in our example 1kΩ) to a potentiometer or preset, a voltage output can be obtained at a predetermined temperature set point for example, 5v output at 60oC and by varying the potentiometer a particular output voltage level can be obtained over a wider temperature range.
It needs to be noted however, that thermistor's are non-linear devices and their standard resistance values at room temperature is different between different thermistor's, which is due mainly to the semiconductor materials they are made from. The Thermistor, have an exponential change with temperature and therefore have a Beta temperature constant ( β ) which can be used to calculate its resistance for any given temperature point.
However, when used with a series resistor such as in a voltage divider network or Whetstone Bridge type arrangement, the current obtained in response to a voltage applied to the divider/bridge network is linear with temperature. Then, the output voltage across the resistor becomes linear with temperature.

Resistive Temperature Detectors (RTD).

Another type of electrical resistance temperature sensor is the Resistance Temperature Detector orRTD. RTD's are precision temperature sensors made from high-purity conducting metals such as platinum, copper or nickel wound into a coil and whose electrical resistance changes as a function of temperature, similar to that of the thermistor. Also available are thin-film RTD's. These devices have a thin film of platinum paste is deposited onto a white ceramic substrate.
resistive temperature detector
RTD
Resistive temperature detectors have positive temperature coefficients (PTC) but unlike the thermistor their output is extremely linear producing very accurate measurements of temperature. However, they have poor sensitivity, that is a change in temperature only produces a very small output change for example, 1Ω/oC. The more common types of RTD's are made from platinum and are calledPlatinum Resistance Thermometer or PRT's with the most commonly available of them all the Pt100 sensor, which has a standard resistance value of 100Ω at 0oC. The downside is that Platinum is expensive and one of the main disadvantages of this type of device is its cost.
Like the thermistor, RTD's are passive resistive devices and by passing a constant current through the temperature sensor it is possible to obtain an output voltage that increases linearly with temperature. A typical RTD has a base resistance of about 100Ω at 0oC, increasing to about 140Ω at 100oC with an operating temperature range of between -200 to +600oC.
Because the RTD is a resistive device, we need to pass a current through them and monitor the resulting voltage. However, any variation in resistance due to self heat of the resistive wires as the current flows through it,  I2, (Ohms Law) causes an error in the readings. To avoid this, the RTD is usually connected into a Whetstone Bridge network which has additional connecting wires for lead-compensation and/or connection to a constant current source.

The Thermocouple

The Thermocouple is by far the most commonly used type of all the temperature sensing devices due to its simplicity, ease of use and their speed of response to changes in temperature, due mainly to their small size. Thermocouples also have the widest temperature range of all the temperature sensors from below -200oC to well over 2000oC.
Thermocouples are thermoelectric sensors that basically consists of two junctions of dissimilar metals, such as copper and constantan that are welded or crimped together. One junction is kept at a constant temperature called the reference (Cold) junction, while the other the measuring (Hot) junction. When the two junctions are at different temperatures, a voltage is developed across the junction which is used to measure the temperature sensor as shown below.

Thermocouple Construction

Thermocouple

The operating principal of a thermocouple is very simple and basic. When fused together the junction of the two dissimilar metals such as copper and constantan produces a "thermo-electric" effect which gives a constant potential difference of only a few millivolts (mV) between them. The voltage difference between the two junctions is called the "Seebeck effect" as a temperature gradient is generated along the conducting wires producing an emf. Then the output voltage from a thermocouple is a function of the temperature changes.
If both the junctions are at the same temperature the potential difference across the two junctions is zero in other words, no voltage output as V1 = V2. However, when the junctions are connected within a circuit and are both at different temperatures a voltage output will be detected relative to the difference in temperature between the two junctions, V1 - V2. This difference in voltage will increase with temperature until the junctions peak voltage level is reached and this is determined by the characteristics of the two dissimilar metals used.
Thermocouples can be made from a variety of different materials enabling extreme temperatures of between -200oC to over +2000oC to be measured. With such a large choice of materials and temperature range, internationally recognised standards have been developed complete with thermocouple colour codes to allow the user to choose the correct thermocouple sensor for a particular application. The British colour code for standard thermocouples is given below.

Thermocouple Colour Codes

Thermocouple Sensor Colour Codes
Extension and Compensating Leads
Code
Type
Conductors (+/-)SensitivityBritish
BS 1843:1952
ENickel Chromium /
Constantan
-200 to 900oCType E Thermocouple
JIron / Constantan0 to 750oCType J Thermocouple
KNickel Chromium /
Nickel Aluminium
-200 to 1250oCType K Thermocouple
NNicrosil / Nisil0 to 1250oCType N Thermocouple
TCopper / Constantan-200 to 350oCType T Thermocouple
UCopper / Copper Nickel
Compensating for
"S" and "R"
0 to 1450oCType U Thermocouple

The three most common thermocouple materials used above for general temperature measurement are Iron-Constantan (Type J), Copper-Constantan (Type T), and Nickel-Chromium (Type K). The output voltage from a thermocouple is very small, only a few millivolts (mV) for a 10oC change in temperature difference and because of this small voltage output some form of amplification is generally required.

Thermocouple Amplification

Thermocouple Amplifier

The type of amplifier, either discrete or in the form of an Operational Amplifier needs to be carefully selected, because good drift stability is required to prevent recalibration of the thermocouple at frequent intervals. This makes the chopper and instrumentation type of amplifier preferable for most temperature sensing applications.
Other types of Temperature Sensor not mentioned here include, Semiconductor Junction Sensors, Infra-red and Thermal Radiation Sensors, Medical type Thermometers, Indicators and Colour Changing Inks or Dyes.

Position Sensors


Position Sensors

In this tutorial we will look at a variety of devices which are classed as Input Devices and are therefore called "Sensors" and in particular those sensors which are Positional in nature which means that they are re
ferenced either to or from some fixed point or position. As their name implies, these types of sensors provide a "position" feedback.
One method of determining a position, is to use either "distance", which could be the distance between two points such as the distance travelled or moved away from some fixed point, or by "rotation" (angular movement). For example, the rotation of a robots wheel to determine its distance travelled along the ground. Either way, Position Sensors can detect the movement of an object in a straight line usingLinear Sensors or by its angular movement using Rotational Sensors.

The Potentiometer.

The most commonly used of all the "Position Sensors", is the potentiometer because it is an inexpensive and easy to use position sensor. It has a wiper contact linked to a mechanical shaft that can be either angular (rotational) or linear (slider type) in its movement, and which causes the resistance value between the wiper/slider and the two end connections to change giving an electrical signal output that has a proportional relationship between the actual wiper position on the resistive track and its resistance value. In other words, resistance is proportional to position.
Potentiometer
Potentiometer
Potentiometers come in a wide range of designs and sizes such as the commonly available round rotational type or the longer and flat linear slider types. When used as a positional sensor the moveable object is connected directly to the shaft or slider of the potentiometer and a DC reference voltage is applied across the two outer fixed connections forming the resistive element. The output voltage signal is taken from the wiper terminal of the sliding contact as shown below.
this configuration produces a potential or voltage divider type circuit output which is proportional to the shaft position. Then for example, if you apply a voltage of say 10v across the resistive element of the potentiometer the maximum output voltage would be equal to the supply voltage at 10 volts, with the minimum output voltage equal to 0 volts. Then the potentiometer wiper will vary the output signal from 0 to 10 volts, with 5 volts indicating that the wiper or slider is at its half-way or centre position.

Potentiometer Construction

Potentiometer Construction

The output signal (Vout) from the potentiometer is taken from the centre wiper connection as it moves along the resistive track, and is proportional to the angular position of the shaft.

Example of a simple Positional Sensing Circuit

Potentiometer Output

While resistive potentiometer position sensors have many advantages: low cost, low tech, easy to use etc, as a position sensor they also have many disadvantages: wear due to moving parts, low accuracy, low repeatability, and limited frequency response.
But there is one main disadvantage of using the potentiometer as a positional sensor. The range of movement of its wiper or slider (and hence the output signal obtained) is limited to the physical size of the potentiometer being used. For example a single turn rotational potentiometer generally only has a fixed electrical rotation between about 240 to 330o however, multi-turn pots of up to 3600o of electrical rotation are also available. Most types of potentiometers use carbon film for their resistive track, but these types are electrically noisy (the crackle on a radio volume control), and also have a short mechanical life.
Wire-wound pots also known as rheostats, in the form of either a straight wire or wound coil resistive wire can also be used, but wire wound pots suffer from resolution problems as their wiper jumps from one wire segment to the next producing a logarithmic (LOG) output resulting in errors in the output signal. These too suffer from electrical noise.
For high precision low noise applications conductive plastic resistance element type polymer film or cermet type potentiometers are now available. These pots have a smooth low friction electrically linear (LIN) resistive track giving them a low noise, long life and excellent resolution and are available as both multi-turn and single turn devices. Typical applications for this type of high accuracy position sensor is in computer game joysticks, steering wheels, industrial and robot applications.

Inductive Position Sensors.

Linear Variable Differential Transformer

One type of positional sensor that does not suffer from mechanical wear problems is the "Linear Variable Differential Transformer" or LVDT for short. This is an inductive type position sensor which works on the same principle as the AC transformer that is used to measure movement. It is a very accurate device for measuring linear displacement and whose output is proportional to the position of its moveable core.
It basically consists of three coils wound on a hollow tube former, one forming the primary coil and the other two coils forming identical secondaries connected electrically together in series but 180o out of phase either side of the primary coil. A moveable soft iron ferromagnetic core (sometimes called an "armature") which is connected to the object being measured, slides or moves up and down inside the tube. A small AC reference voltage called the "excitation signal" (2 - 20V rms, 2 - 20kHz) is applied to the primary winding which inturn induces an EMF signal into the two adjacent secondary windings (transformer principles).
If the soft iron magnetic core armature is exactly in the centre of the tube and the windings, "null position", the two induced emf's in the two secondary windings cancel each other out as they are 180oout of phase, so the resultant output voltage is zero. As the core is displaced slightly to one side or the other from this null or zero position, the induced voltage in one of the secondaries will be become greater than that of the other secondary and an output will be produced.
The polarity of the output signal depends upon the direction and displacement of the moving core. The greater the movement of the soft iron core from its central null position the greater will be the resulting output signal. The result is a differential voltage output which varies linearly with the cores position. Therefore, the output signal has both an amplitude that is a linear function of the cores displacement and a polarity that indicates direction of movement.
The phase of the output signal can be compared to the primary coil excitation phase enabling suitable electronic circuits such as the AD592 LVDT Sensor Amplifier to know which half of the coil the magnetic core is in and thereby know the direction of travel.

The Linear Variable Differential Transformer

LVDT Sensor

When the armature is moved from one end to the other through the centre position the output voltages changes from maximum to zero and back to maximum again but in the process changes its phase angle by 180 deg's. This enables the LVDT to produce an output AC signal whose magnitude represents the amount of movement from the centre position and whose phase angle represents the direction of movement of the core.
A typical application of a linear variable differential transformer (LDVT) sensor would be as a pressure transducer, were the pressure being measured pushes against a diaphragm to produce a force. The force is then converted into a readable voltage signal by the sensor.
Advantages of the linear variable differential transformer, or LVDT compared to a resistive potentiometer are that its linearity, that is its voltage output to displacement is excellent, very good accuracy, good resolution, high sensitivity as well as frictionless operation. They are also sealed for use in hostile environments.

Inductive Proximity Sensors.

Another type of inductive sensor in common use is the Inductive Proximity Sensor also called an Eddy current sensor. While they do not actually measure displacement or angular rotation they are mainly used to detect the presence of an object in front of them or within a close proximity, hence the name proximity sensors.
Proximity sensors, are non-contact devices that use a magnetic field for detection with the simplest magnetic sensor being the reed switch. In an inductive sensor, a coil is wound around an iron core within an electromagnetic field to form an inductive loop.
When a ferromagnetic material is placed within the eddy current field generated around the inductive sensor, such as a ferromagnetic metal plate or metal screw, the inductance of the coil changes significantly. The proximity sensors detection circuit detects this change producing an output voltage. Therefore, inductive proximity sensors operate under the electrical principle of Faraday's Law of inductance.

Inductive Proximity Sensors

inductive proximity sensor
An inductive proximity sensor has four main components; The oscillator which produces the electromagnetic field, the coil which generates the magnetic field, the detection circuit which detects any change in the field when an object enters it and the output circuit which produces the output signal, either with normally closed (NC) or normally open (NO) contacts. Inductive proximity sensors allow for the detection of metallic objects in front of the sensor head without any physical contact of the object itself being detected. This makes them ideal for use in dirty or wet environments. The "sensing" range of proximity sensors is very small, typically 0.1mm to 12mm.
Proximity Sensor
Proximity Sensor
As well as industrial applications, inductive proximity sensors are also used to control the changing of traffic lights at junctions and cross roads. Rectangular inductive loops of wire are buried into the tarmac road surface and when a car or other road vehicle passes over the loop, the metallic body of the vehicle changes the loops inductance and activates the sensor thereby alerting the traffic lights controller that there is a vehicle waiting.
One main disadvantage of these types of sensors is that they are "Omni-directional", that is they will sense a metallic object either above, below or to the side of it. Also, they do not detect non-metallic objects althoughCapacitive Proximity Sensors and Ultrasonic Proximity Sensors are available. Other commonly available magnetic position sensor include: reed switches, hall effect sensors and variable reluctance sensors.

Rotary Encoders.

Rotary Encoders resemble potentiometers mentioned earlier but are non-contact optical devices used for converting the angular position of a rotating shaft into an analogue or digital data code. In other words, they convert mechanical movement into an electrical signal (preferably digital).
All optical encoders work on the same basic principle. Light from an LED or infra-red light source is passed through a rotating high-resolution encoded disk that contains the required code patterns, either binary, grey code or BCD. Photo detectors scan the disk as it rotates and an electronic circuit processes the information into a digital form as a stream of binary output pulses that are fed to counters or controllers which determine the actual angular position of the shaft.
There are two basic types of rotary optical encoders, Incremental Encoders and Absolute Position Encoders.

Incremental Encoder

encoder disk
Encoder Disk
Incremental Encoders, also known as quadrature encoders or relative rotary encoder, are the simplest of the two position sensors. Their output is a series of square wave pulses generated by a photocell arrangement as the coded disk, with evenly spaced transparent and dark lines called segments on its surface, moves or rotates past the light source. The encoder produces a stream of square wave pulses which, when counted, indicates the angular position of the rotating shaft.
Incremental encoders have two separate outputs called "quadrature outputs". These two outputs are displaced at 90oout of phase from each other with the direction of rotation of the shaft being determined from the output sequence.
The number of transparent and dark segments or slots on the disk determines the resolution of the device and increasing the number of lines in the pattern increases the resolution per degree of rotation. Typical encoded discs have a resolution of up to 256 pulses or 8-bits per rotation.
The simplest incremental encoder is called a tachometer. It has one single square wave output and is often used in unidirectional applications where basic position or speed information only is required. The "Quadrature" or "Sine wave" encoder is the more common and has two output square waves commonly called channel A and channel B. This device uses two photo detectors, slightly offset from each other by 90o thereby producing two separate sine and cosine output signals.

Simple Incremental Encoder

Incremental Encoder

By using the Arc Tangent mathematical function the angle of the shaft in radians can be calculated. Generally, the optical disk used in rotary position encoders is circular, then the resolution of the output will be given as: θ = 360/n, where n equals the number of segments on coded disk. Then for example, the number of segments required to give an incremental encoder a resolution of 1o will be: 1o = 360/n, therefore, n = 360 windows, etc. Also the direction of rotation is determined by noting which channel produces an output first, either channel A or channel B giving two directions of rotation, A leads B or B leads A. This arrangement is shown below.

Incremental Encoder Output

Incremental Encoder Output

One main disadvantage of incremental encoders when used as a position sensor, is that they require external counters to determine the absolute angle of the shaft within a given rotation. If the power is momentarily shut off, or if the encoder misses a pulse due to noise or a dirty disc, the resulting angular information will produce an error. One way of overcoming this disadvantage is to use absolute position encoders.

Absolute Position Encoder

Absolute Position Encoders are more complex than quadrature encoders. They provide a unique output code for every single position of rotation indicating both position and direction. Their coded disk consists of multiple concentric "tracks" of light and dark segments. Each track is independent with its own photo detector to simultaneously read a unique coded position value for each angle of movement. The number of tracks on the disk corresponds to the binary "bit"-resolution of the encoder so a 12-bit absolute encoder would have 12 tracks and the same coded value only appears once per revolution.

4-bit Binary Coded Disc

Absolute Positional Encoder

One main advantage of an absolute encoder is its non-volatile memory which retains the exact position of the encoder without the need to return to a "home" position if the power fails. Most rotary encoders are defined as "single-turn" devices, but absolute multi-turn devices are available, which obtain feedback over several revolutions by adding extra code disks.
Typical application of absolute position encoders are in computer hard drives and CD/DVD drives were the absolute position of the drives read/write heads are monitored or in printers/plotters to accurately position the printing heads over the paper.

Sensors and Transducers


Sensors and Transducers

Simple stand alone electronic circuits can be made to repeatedly flash a light or play a musical note, but in order for an electronic circuit or system to perform any useful task or function it needs to be able to
communicate with the "real world" whether this is by reading an input signal from an "ON/OFF" switch or by activating some form of output device to illuminate a single light. In other words, an electronic circuit or system must be able to "do" something and Transducers are the perfect component for this.
The word "Transducer" is the collective term used for both Sensors which can be used to sense a wide range of different energy forms such as movement, electrical signals, radiant energy, thermal or magnetic energy etc, and Actuators which can be used to switch voltages or currents.
There are many different types of both analogue and digital input and output devices available to choose from. The type of input or output transducer being used, really depends upon the type of signal or process being "Sensed" or "Controlled" but we can define a transducer as a device that converts one physical quantity into another.
Devices which perform an "Input" function are commonly called Sensors because they "sense" a physical change in some characteristic that changes in response to some excitation, for example heat or force and covert that into an electrical signal. Devices which perform an "Output" function are generally called Actuators and are used to control some external device, for example movement or sound.
Electrical Transducers are used to convert energy of one kind into energy of another kind, so for example, a microphone (input device) converts sound waves into electrical signals for the amplifier to amplify (a process), and a loudspeaker (output device) converts these electrical signals back into sound waves and an example of this type of simple Input/Output (I/O) system is given below.

Simple Input/Output System using Sound Transducers

Input Output Block Diagram

There are many different types of transducers available in the marketplace, and the choice of which one to use really depends upon the quantity being measured or controlled, with the more common types given in the table below.

Common Transducers

Quantity being
Measured
Input Device
(Sensor)
Output Device
(Actuator)
Light LevelLight Dependant Resistor (LDR)
Photodiode
Photo-transistor
Solar Cell
Lights & Lamps
LED's & Displays
Fibre Optics
TemperatureThermocouple
Thermistor
Thermostat
Resistive temperature detectors (RTD)
Heater
Fan
Force/PressureStrain Gauge
Pressure Switch
Load Cells
Lifts & Jacks
Electromagnet
Vibration
PositionPotentiometer
Encoders
Reflective/Slotted Opto-switch
LVDT
Motor
Solenoid
Panel Meters
SpeedTacho-generator
Reflective/Slotted Opto-coupler
Doppler Effect Sensors
AC and DC Motors
Stepper Motor
Brake
SoundCarbon Microphone
Piezo-electric Crystal
Bell
Buzzer
Loudspeaker

Input type transducers or sensors, produce a voltage or signal output response which is proportional to the change in the quantity that they are measuring (the stimulus). The type or amount of the output signal depends upon the type of sensor being used. But generally, all types of sensors can be classed as two kinds, either passive or active.
Active sensors require some form of external power to operate, called an excitation signal which is used by the sensor to produce the output signal. Active sensors are self-generating devices because their own properties change in response to an external effect producing for example, an output voltage of 1 to 10v DC or an output current such as 4 to 20mA DC.
A good example of an active sensor is a strain gauge which is basically a pressure-sensitive resistive bridge network. It does not generate an electrical signal itself, but by passing a current through it (excitation signal), its electrical resistance can be measured by detecting variations in the current and/or voltage across it relating these changes to the amount of strain or force being applied.
Unlike an active sensor, a passive sensor does not need any additional energy source and directly generates an electric signal in response to an external stimulus. For example, a thermocouple or photodiode. Passive sensors are direct sensors which change their physical properties, such as resistance, capacitance or inductance etc. As well as analogue sensors, Digital Sensors produce a discrete output representing a binary number or digit such as a logic level "0" or a logic level "1".

Analogue and Digital Sensors

Analogue Sensors

Analogue Sensors produce a continuous output signal or voltage which is generally proportional to the quantity being measured. Physical quantities such as Temperature, Speed, Pressure, Displacement, Strain etc are all analogue quantities as they tend to be continuous in nature. For example, the temperature of a liquid can be measured using a thermometer or thermocouple which continuously responds to temperature changes as the liquid is heated up or cooled down.

Thermocouple used to produce an Analogue Signal

Analogue Signal Output
Analogue sensors tend to produce output signals that are changing smoothly and continuously over time. These signals tend to be very small in value from a few mico-volts (uV) to serveral milli-volts (mV), so some form of amplification is required. Then circuits which measure analogue signals usually have a slow response and/or low accuracy. Also analogue signals can be easily converted into digital type signals for use in microcontroller systems by the use of analogue-to-digital converters, or ADC's.

Digital Sensors

As its name implies, Digital Sensors produce a discrete output signal or voltage that is a digital representation of the quantity being measured. Digital sensors produce a Binary output signal in the form of a logic "1" or a logic "0", ("ON" or "OFF"). This means then that a digital signal only produces discrete (non-continuous) values which may be outputted as a single "bit", (serial transmission) or by combining the bits to produce a single "byte" output (parallel transmission).

Light Sensor used to produce an Digital Signal

Digital Signal Output

In our simple example above, the speed of the rotating shaft is measured by using a digital LED/Opto-detector sensor. The disc which is fixed to a rotating shaft (for example, from a motor or robot wheels), has a number of transparent slots within its design. As the disc rotates with the speed of the shaft, each slot passes by the sensor inturn producing an output pulse representing a logic "1" or logic "0" level.
These pulses are sent to a register of counter and finally to an output display to show the speed or revolutions of the shaft. By increasing the number of slots or "windows" within the disc more output pulses can be produced for each revolution of the shaft. The advantage of this is that a greater resolution and accuracy is acheived as fractions of a revolution can be detected. Then this type of sensor arrangement could also be used for positional control with one of the discs slots representing a reference position.
Compared to analogue signals, digital signals or quantities have very high accuracies and can be both measured and "sampled" at a very high clock speed. The accuracy of the digital signal is proportional to the number of bits used to represent the measured quantity. For example, using a processor of 8 bits, will produce an accuracy of 0.195% (1 part in 512). While using a processor of 16 bits gives an accuracy of 0.0015%, (1 part in 65,536) or 130 times more accurate. This accuracy can be maintained as digital quantities are manipulated and processed very rapidly, millions of times faster than analogue signals.
In most cases, sensors and more specifically analogue sensors generally require an external power supply and some form of additional amplification or filtering of the signal in order to produce a suitable electrical signal which is capable of being measured or used. One very good way of achieving both amplification and filtering within a single circuit is to use Operational Amplifiers as seen before.

Signal Conditioning

As we saw in the Operational Amplifier tutorial, op-amps can be used to provide amplification of signals when connected in either inverting or non-inverting configurations. The very small analogue signal voltages produced by a sensor such as a few milli-volts or even pico-volts can be amplified many times over by a simple op-amp circuit to produce a much larger voltage signal of say 5v or 5mA that can then be used as an input signal to a microprocessor or analogue-to-digital based system. Therefore, an amplification of a sensors output signal has to be made with a voltage gain up to 10,000 and a current gain up to 1,000,000 with the amplification of the signal being linear with the output signal being an exact reproduction of the input, just changed in amplitude.
Then amplification is part of signal conditioning. So when using analogue sensors, generally some form of amplification (Gain), impedance matching, isolation between the input and output or perhaps filtering (frequency selection) may be required before the signal can be used and this is conveniently performed by Operational Amplifiers.
Also, when measuring very small physical changes the output signal of a sensor can become "contaminated" with unwanted signals or voltages that prevent the actual signal required from being measured correctly. These unwanted signals are called "Noise". This Noise or Interference can be either greatly reduced or even eliminated by using signal conditioning or filtering techniques as we discussed in the Active Filter tutorial.
By using either a Low Pass, or a High Pass or even Band Pass filter the "bandwidth" of the noise can be reduced to leave just the output signal required. For example, many types of inputs from switches, keyboards or manual controls are not capable of changing state rapidly and so low-pass filter can be used. When the interference is at a particular frequency, for example mains frequency, narrow band reject or Notch filters can be used to produce frequency selective filters.

Typical Op-amp Filters

Operational amplifier filters

Were some random noise still remains after filtering it may be necessary to take several samples and then average them to give the final value so increasing the signal-to-noise ratio.Either way, both amplification and filtering play an important role in interfacing microprocessor and electronics based systems to "real world" conditions.

Proximity Sensor


Inductive Proximity Sensor



Inductive Proximity Sensors 

Inductive proximity sensors operate under the electrical principle of
inductance. Inductance is the phenomenon where a fluctuating current, which by definition has a magnetic component, induces an electromotive force (emf) in a target object. To amplify a device’s inductance effect, a sensor manufacturer twists wire into a tight coil and runs a current through it. An inductive proximity sensor has four components; The coil, oscillator, detection circuit and output circuit. The oscillator generates a fluctuating magnetic field the shape of a doughnut around the winding of the coil that locates in the device’s sensing face. When a metal object moves into the inductive proximity sensor’s field of detection, Eddy circuits build up in the metallic object, magnetically push back, and finally reduce the Inductive sensor’s own oscillation field. The sensor’s detection circuit monitors the oscillator’s strength and triggers an output from the output circuitry when the oscillator becomes reduced to a sufficient level.







































Ultrasonic level measurement


Liquid Level Sensors



Non-contact ultrasonic level measurement is ideal for simple standard applications, both for liquids and for solids.

Measuring principle of ultrasonic level measurement

The ultrasonic sensor emits ultrasonic pulses in the direction of the medium, which then reflects them back.
The elapsed time from emission to reception of the signals is proportional to the level in the tank.

The advantages of ultrasonic level measurement

The non-contact measurement with ultrasonic sensors is independent of product properties and provides for maintenance-free operation.

VEGASON 61


Application area

The VEGASON 61 is an ultrasonic sensor for continuous level measurement of liquids or bulk solids. Typical applications are the measurement of liquids in storage tanks or open basins. The sensor is also suitable for the detection of bulk solids in small vessels or open containers. The non-contact measuring principle is independent of product features and allows a setup without medium.

Advantages

  • Non-contact measurement
  • Reliable measurement independent of product features
  • Price-favourable solution for simple applications

Technical data

Measuring range
in liquids: 0.25 … 5 m
in bulk solids: 0.25 … 2 m
Process fitting
thread G1½, 1½ NPT
Process temperature
-40 … +80 °C
Process pressure
-0,2 … +2 bar
(-20 … +200 kPa)
Accuracy
+/- 10 mm
SIL qualification
optionally up to SIL2








VEGASON 62

Application area

The VEGASON 62 is an ultrasonic sensor for continuous level measurement of liquids and bulk solids. Typical applications are the measurement of liquids in storage vessels or open basins. The sensor is also suitable for the detection of bulk solids in small vessels or silos. Application areas can be found in all industries. The non-contact measuring principle is unaffected by product features and allows a setup without medium.

Advantages

  • Non-contact measurement
  • Reliable measurement independent of product features
  • Price-favourable solution for simple applications

Technical data

Measuring range
in liquids: 0.4 … 8 m
in bulk solids: 0.4 … 3.5 m
Process fitting
thread G2, 2 NPT
Process temperature
-40 … +80 °C
Process pressure
-0,2 … +2 bar(-20 … +200 kPa)
Accuracy
+/- 10 mm
SIL qualification
optionally up to SIL2







VEGASON 63







Application area

The VEGASON 63 is an ultrasonic sensor for continuous level measurement of liquids and bulk solids. Typical applications are the measurement of liquids in storage tanks and open basins. The sensor is suitable for continuous level measurement of bulk solids in small up to average-size vessels. The non-contact measuring principle is independent of product features and allows a setup without medium.

Advantages

  • Non-contact measurement
  • Reliable measurement, independent of product features
  • Proven measurement technology for standard applications

Technical data

Measuring range
in liquids: 0.6 … 15 m
in bulk solids: 0.6 … 7 m
Process fitting
compression flange DN 100
mounting strap
Process temperature
-40 … +80 °C
Process pressure
-0,2 … +1 bar
(-20 … +100 kPa)
Accuracy
+/- 10 mm
SIL qualification
optionally up to SIL2